Search results for " Anti-virulence agents"
showing 4 items of 4 documents
Curcumin derivatives as inhibitors of Gram positive and Gram negative biofilm formation
2015
1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A
2020
The inhibition or prevention of biofilm formation represents an emerging strategy in the war against antibiotic resistance, interfering with key players in bacterial virulence. This approach includes the inhibition of the catalytic activity of transpeptidase sortase A (Srt A), a membrane enzyme responsible for covalently attaching a wide variety of adhesive matrix molecules to the peptidoglycan cell wall in Gram-positive strains. A new series of seventeen 1,2,4-oxadiazole derivatives was efficiently synthesized and screened as potential new anti-virulence agents. The ability of inhibiting biofilm formation was evaluated against both Gram-positive and Gram-negative pathogens. Remarkably, all…
2,6-Disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent staphylococcal biofilm inhibitors.
2019
Abstract A class of 36 new 2-(6-phenylimidazo[2,-1-b][1,3,4]thiadiazol-2-yl)-1H-indoles was efficiently synthesized and evaluated for their anti-biofilm properties against the Gram-positive bacterial reference strains Staphylococcus aureus ATCC 25923, S. aureus ATCC 6538 and Staphylococcus epidermidis ATCC 12228, and the Gram-negative strains Pseudomonas aeruginosa ATCC 15442 and Escherichia coli ATCC 25922. Many of these new compounds, were able to inhibit biofilm formation of the tested staphylococcal strains showing BIC50 lower than 10 μg/ml. In particular, derivatives 9c and 9h showed remarkable anti-biofilm activity against S. aureus ATCC 25923 with BIC50 values of 0.5 and 0.8 μg/ml, r…
New Thiazole Nortopsentin Analogues Inhibit Bacterial Biofilm Formation.
2018
New thiazole nortopsentin analogues were conveniently synthesized and evaluated for their activity as inhibitors of biofilm formation of relevant Gram-positive and Gram-negative pathogens. All compounds were able to interfere with the first step of biofilm formation in a dose-dependent manner, showing a selectivity against the staphylococcal strains. The most active derivatives elicited IC50 values against Staphylococcus aureus ATCC 25923, ranging from 0.40&ndash